2021-05-11 09:15:47 甘肃公考考试网 //gs.huatu.com/gwy/ 关注公众号领资料 QQ备考群 APP刷题 文章来源:甘肃人事考试网
排列组合是公职考试中的常考题型,也是完完全全的高中知识考查。很多人觉得其抽象难懂,每次遇到都是看运气能不能蒙对了。但排列组合题真的就是行测“杀手”,遇到之后只能拼运气吗?
一、应用环境
隔板模型主要用来解决同素分堆问题,所谓的同素分堆指的是相同的元素分组问题。比如:将5个苹果分给3个小朋友,每个小朋友至少分得一个的方法数有多少种?对于这样的问题我们有一个一般性的问题描述:把n个相同元素分给m个不同对象,每个对象至少分得1个元素的方法数有多少种?
二、方法介绍
隔板模型的做法:在n个相同元素的n―1个间隙中插入m―1个板,将其分为m组。根据板的插入位置不同,既可以考虑到所有分类情况,也能兼顾到至少一个的特殊要求。由于每个板都是一样的,所以不考虑顺序,结果数记为。当然,有时候题干中要求的每个对象不一定是至少分得1个元素,所以会有条件的变形,但并不影响我们的方法使用。
下面我们就来感受下隔板模型解决的一些基本问题和变形问题。
三、模型应用
例1.某单位订阅了6份学习材料发放给4个部门,每个部门至少发放一份材料。问一共有多少种不同的发放方法?
A.9 B.10 C.11 D.12
选B。题干中学习材料是相同元素,部门为不同对象,每个对象至少分得一个,属于同素分堆一般性问题描述,所以直接套结论即可。在6个元素的5个间隙中插入3个板分给4个对象,即,选B。
例2.某单位订阅14份学习材料发放给4个部门,每个部门至少发放3份材料。问一共有多少种不同的发放方法?
A.9 B.10 C.11 D.12
选B。题干中学习材料是相同元素,部门为不同对象,属于同素分堆问题。但题干要求每个部门至少3份,不是一般性问题描述,属于变形题。所以不能直接套用公式,那么需要问题转化,至少3份=至少1份+2份。第一步,每个部门先分2份,由于材料一样,所以分法就一种。这样还剩下14-4×2=6份;第二步,将剩下的6份分给4个部门,保证每个部门至少一份,即;第三步,由于每个部门先分了2份,再加上第二步的每个部门至少一份,这样就可以保证每个部门至少3份了,所以分步相乘,选B。